How to check if a given matrix is symmetric?

Free Coding Questions Catalog
Boost your coding skills with our essential coding questions catalog. Take a step towards a better tech career now!

In mathematics, a matrix is said to be symmetric if it is equal to its transpose. That is, the matrix ( A ) is symmetric if ( A = A^T ), where ( A^T ) denotes the transpose of matrix ( A ). This implies that ( a_{ij} = a_{ji} ) for all ( i ) and ( j ), meaning that the element in the ( i )-th row and ( j )-th column is equal to the element in the ( j )-th row and ( i )-th column for all ( i ) and ( j ).

Here's how you can check whether a given matrix is symmetric using Python with NumPy, a popular library for numerical computations:

Step 1: Import NumPy

First, you need to import the NumPy library. If you don't have NumPy installed, you can install it via pip:

pip install numpy

Then, import it in your Python script:

import numpy as np

Step 2: Define the Matrix

You can define your matrix using numpy.array. Here's an example:

# Define a symmetric matrix A = np.array([[2, 7, 1], [7, 4, -5], [1, -5, 6]])

Step 3: Write a Function to Check Symmetry

You can write a simple function that checks if a matrix is equal to its transpose:

def is_symmetric(matrix): return np.array_equal(matrix, matrix.T)

Step 4: Test the Function

Now, you can test this function with your matrix:

print("Is the matrix symmetric?", is_symmetric(A))

Full Example Code

Here’s the full example code put together:

import numpy as np # Define a symmetric matrix A = np.array([[2, 7, 1], [7, 4, -5], [1, -5, 6]]) # Define a function to check if a matrix is symmetric def is_symmetric(matrix): return np.array_equal(matrix, matrix.T) # Test the function print("Is the matrix symmetric?", is_symmetric(A))

Considerations

  • Square Matrix: Note that only square matrices (same number of rows and columns) can be symmetric. If you might be dealing with non-square matrices, you should first check if the matrix is square before comparing it to its transpose.
  • Floating Point Precision: When dealing with floating-point numbers, direct comparisons can sometimes lead to unexpected results due to precision issues. In such cases, consider using numpy.allclose() instead of numpy.array_equal() to allow a tolerance for numerical precision.

Here is an example that incorporates these considerations:

def is_symmetric(matrix): if matrix.shape[0] != matrix.shape[1]: return False # Not a square matrix return np.allclose(matrix, matrix.T) # Example with floating-point numbers B = np.array([[1.0, 2.0000001], [2.0, 1.0]]) print("Is the matrix B symmetric?", is_symmetric(B))

This approach provides a robust way to check for matrix symmetry, accommodating both integer and floating-point matrices effectively.

TAGS
Coding Interview
CONTRIBUTOR
Design Gurus Team

GET YOUR FREE

Coding Questions Catalog

Design Gurus Newsletter - Latest from our Blog
Boost your coding skills with our essential coding questions catalog.
Take a step towards a better tech career now!
Explore Answers
What is a reasonable salary negotiation?
What is the numpy.zeros() function in Python?
How can I memorize algorithms easily?
Related Courses
Image
Grokking the Coding Interview: Patterns for Coding Questions
Grokking the Coding Interview Patterns in Java, Python, JS, C++, C#, and Go. The most comprehensive course with 476 Lessons.
Image
Grokking Data Structures & Algorithms for Coding Interviews
Unlock Coding Interview Success: Dive Deep into Data Structures and Algorithms.
Image
Grokking Advanced Coding Patterns for Interviews
Master advanced coding patterns for interviews: Unlock the key to acing MAANG-level coding questions.
Image
One-Stop Portal For Tech Interviews.
Copyright © 2024 Designgurus, Inc. All rights reserved.